首页 > 论文 > 光学学报 > 40卷 > 16期(pp:1605001--1)

斜入射下双波段双层衍射光学元件优化设计与分析

Optimal Design and Analysis of Dual-Band Double-Layer Diffractive Optical Element Under Oblique Incidence

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

基于斜入射衍射光学元件的正常工作模式,建立了斜入射下入射角度和入射波长对双波段双层衍射光学元件衍射效率影响的数学模型,给出了对应双层衍射光学元件的优化设计方法。通过在入射角度范围内优化设计波长对,计算双层衍射光学元件微结构高度,确保了斜入射时双层衍射光学元件仍具有高衍射效率,弥补了双层衍射光学元件的缺陷。该方法能够指导双波段折衍混合成像系统的设计,也可以扩展至多波段多层衍射光学元件的设计中。依据该方法,设计了一套基于双层衍射光学元件的中/长波双波段折衍混合光学系统。结果表明,与常规设计相比,该方法的设计理论更加合理,设计结果更优。

Abstract

Based on the normal working mode of a diffractive optical element (DOE) under oblique incidence, a mathematical model about the effects of incident angle and wavelength on the diffraction efficiency of a dual-band double-layer DOE under oblique incidence is established, and the optimal design of the double-layer DOE is presented. By optimizing the design wavelength pair within the incident angle range, the microstructure height of the double-layer DOE is calculated and the high diffraction efficiency of double-layer DOE under oblique incidence is realized, which makes up the defects in the double-layer DOE, guides the design of the dual-band hybrid imaging system, and can be extended to the design of a multi-band multi-layer DOE. Based on this method, a hybrid middle/long dual-band infrared optical system is designed. The results show that compared with the conventional method, it possesses a more reasonable design theory and a better design result.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:O436

DOI:10.3788/aos202040.1605001

所属栏目:衍射与光栅

基金项目:国家自然科学基金(61927810,61905195)、陕西省自然科学基金青年基金 (2019JQ-063)、中央高校基本科研业务费 (310201911CX045)、2019年航天科学技术基金(2019-HT-XD)、中国博士后基金面上资助(2018M643728)、装备预研航天科技联合基金 (6141B061007)

收稿日期:2020-04-14

修改稿日期:2020-04-22

网络出版日期:--

作者单位    点击查看

毛珊:西北工业大学物理科学与技术学院陕西省光信息技术重点实验室, 陕西, 西安 710129西北工业大学物理科学与技术学院超常条件材料物理与化学教育部重点实验室, 陕西, 西安 710129
解娜:光电信息安全控制科学技术实验室, 天津 300308
赵建林:西北工业大学物理科学与技术学院陕西省光信息技术重点实验室, 陕西, 西安 710129西北工业大学物理科学与技术学院超常条件材料物理与化学教育部重点实验室, 陕西, 西安 710129

联系人作者:毛珊(maoshan_optics@nwpu.edu.cn)

【1】Reibel Y, Chabuel F, Vaz C, et al. Infrared dual-band detectors for next generation[J]. Proceedings of SPIE, 2011, 8012: 801238.

【2】Fischer R. E. Optical design for the infrared[J]. Proceedings of SPIE, 1985, 0531: 82-120.

【3】Goldflam M D, Ruiz I, Howell S W, et al. Tunable dual-band graphene-based infrared reflectance filter[J]. Optics Express, 2018, 26(7): 8532-8524.

【4】Simola E T, de Iacovo A, Frigerio J, et al. Voltage-tunable dual-band Ge/Si photodetector operating in VIS and NIR spectral range[J]. Optics Express, 2019, 27(6): 8529-8539.

【5】King D F, Graham J S, Kennedy A M, et al. 3rd-generation MW/LWIR sensor engine for advanced tactical systems[J]. Proceedings of SPIE, 2008, 6940: 69402R.

【6】Tamagawa Y, Tajime T. Dual-band optical systems with a projective athermal chart: design[J]. Applied Optics, 1997, 36(1): 297-301.

【7】Liu J, Lu X Q. Design of uncooled infrared dual-band continuous-zoom optical system[J]. Journal of Xi''an Technological University , 2016, 36(6): 436-445.
刘钧, 鲁茜倩. 非制冷型红外双波段连续变焦光学系统设计[J]. 西安工业大学学报, 2016, 36(6): 436-445.

【8】Zhang L, Mao X, Wang H L. The design of MWIR/LWIR multiple FOV optical system[J]. Journal of Infrared and Millimeter Waves, 2013, 32(3): 254-258, 264.
张良, 毛鑫, 王合龙. 中波/长波双色多视场光学系统设计[J]. 红外与毫米波学报, 2013, 32(3): 254-258, 264.

【9】Zou Y C, Chau F S, Zhou G Y. Ultra-compact optical zoom endoscope using solid tunable lenses[J]. Optics Express, 2017, 25(17): 20675-20688.

【10】Jo S H, Park S C. Design and analysis of an 8x four-group zoom system using focus tunable lenses[J]. Optics Express, 2018, 26(10): 13370.

【11】Jia M, Xue C X. Design of dual-band infrared optical system with Q-type asphere[J]. Acta Optica Sinica, 2019, 39(10): 1022001.
贾梦, 薛常喜. 基于Q-type非球面的双波段红外光学系统设计[J]. 光学学报, 2019, 39(10): 1022001.

【12】Zhu J W, Wang Q, Fan J H, et al. Design of a miniaturized infrared wide-angle lens[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070801.
朱佳巍, 王旗, 范俊辉, 等. 一款小型化红外广角镜头的设计[J]. 激光与光电子学进展, 2018, 55(7): 070801.

【13】Reshidko D, Reshidko P, Carmeli R. Optical design study and prototyping of a dual-field zoom lens imaging in the 1-5 micron infrared waveband[J]. Proceedings of SPIE, 2015, 9580: 95800C.

【14】Nevo Y. Dual-band optics[J]. Optical Engineering, 2013, 52(5): 053002.

【15】Bigwood C. Two-element lenses for military applications[J]. Optical Engineering, 2011, 50(12): 121705.

【16】Dong K Y, Zhang L G, Wang J, et al. Design of the infrared dual-band athermalized optical system based on HDE[J]. Proceedings of SPIE, 2009, 7383: 73831B.

【17】Bigwood C. New infrared optical systems using diffractive optics[J]. Proceedings of SPIE, 2002, 4767: 1-12.

【18】Swanson G J, Veldkamp W B. Diffractive optical elements for use in infrared systems[J]. Optics Engineering, 1989, 28(6):605-608.

【19】Wood A, Rogers P. Diffractive optics in modern optical engineering[J]. Proceedings of SPIE, 2005, 5865: 58650B .

【20】Wood A, Lee M S, Cassette S. Infrared hybrid optics with high broadband efficiency[J]. Proceedings of SPIE, 2005, 5874:58740G.

【21】Riedl M J. Design example for the use of hybrid optical elements in the infrared[J]. Applied Optics, 1996, 35(34): 6833-6834.

【22】Cox J A. Application of diffractive optics to uncooled infrared imagers[J]. Proceedings of SPIE, 1991, 1540: 606-611.

【23】Yang H F, Xue C X, Li C, et al. Diffraction efficiency sensitivity to oblique incident angle for multilayer diffractive optical elements[J]. Applied Optics, 2016, 55(25): 7126-7133.

【24】Xue C X, Cui Q F, Pan C Y, et al. Design of multi-layer diffractive optical element with bandwidth integral average diffraction efficiency[J]. Acta Optica Sinica, 2010, 30(10): 3016-3020.
薛常喜, 崔庆丰, 潘春艳, 等. 基于带宽积分平均衍射效率的多层衍射光学元件设计[J]. 光学学报, 2010, 30(10): 3016-3020.

【25】Mao W F, Zhang X, Qu H M, et al. Broad dual-band Kinoform infrared double-layer diffractive optical system design[J]. Acta Optica Sinica, 2014, 34(10): 1022002.
毛文峰, 张新, 曲贺盟, 等. 红外双色宽波段高衍射效率衍射光学系统设计[J]. 光学学报, 2014, 34(10): 1022002.

【26】Fan C J, Wang Z Q, Lin L, et al. Design of infrared inverted telephoto-optical system with double-layer harmonic diffractive element[J]. Chinese Physics Letters, 2007, 24(7): 1973-1976.

【27】Xue C X, Cui Q F, Liu T, et al. Optimal design of a multilayer diffractive optical element for dual wavebands[J]. Optics Letters, 2010, 35(24): 4157-4159.

【28】Fu Q, Zhang X. Materials choose for mid-wave/long-wave dual-waveband infrared optics[J]. Acta Optica Sinica, 2015, 35(2): 0208003.
付强, 张新. 中波/长波双色红外光学系统材料选择[J]. 光学学报, 2015, 35(2): 0208003.

【29】Zhang B, Cui Q F, Piao M X, et al. Study on substrate material selection method of dual-band multilayer diffractive optical element and its application in zoom system[J]. Acta Optica Sinica, 2020, 40(6):0605001.
张博, 崔庆丰, 朴明旭. 双波段多层衍射光学元件的基底材料选择方法研究及其在变焦系统中的应用[J]. 光学学报, 2020, 40(6):0605001.

【30】Mao S, Zhao L D, Zhao J L. Integral diffraction efficiency model for multilayer diffractive optical elements with wide angles of incidence in case of polychromatic light[J]. Optics Express, 2019, 27(15): 21497-21507.

【31】Mao S, Zhao J L. Diffractive optical element optimization under wide incident angle and waveband situations[J]. Optics Communications, 2020, 458: 124762.

【32】Buralli D A, Michael Morris G. Effects of diffraction efficiency on the modulation transfer function of diffractive lenses[J]. Applied Optics, 1992, 31(22): 4389-4396.

【33】O′Shea D C, Suleski T J, Kathman A D, et al. Diffractive optics: design, fabrication, and test[M]. Bellingham: SPIE, 2003.

【34】He C L, Zong W J, Sun T. Origins for the size effect of surface roughness in diamond turning[J]. International Journal of Machine Tools and Manufacture, 2016, 106:22-42.

引用该论文

Mao Shan,Xie Na,Zhao Jianlin. Optimal Design and Analysis of Dual-Band Double-Layer Diffractive Optical Element Under Oblique Incidence[J]. Acta Optica Sinica, 2020, 40(16): 1605001

毛珊,解娜,赵建林. 斜入射下双波段双层衍射光学元件优化设计与分析[J]. 光学学报, 2020, 40(16): 1605001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

欧洲女人性开放视频