首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1551-1557)

Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Heterogeneously integrated lasers in the O-band are a key component in realizing low-power optical interconnects for data centers and high-performance computing. Quantum-dot-based materials have been particularly appealing for light generation due to their ultralow lasing thresholds, small linewidth enhancement factor, and low sensitivity to reflections. Here, we present widely tunable quantum-dot lasers heterogeneously integrated on silicon-on-insulator substrate. The tuning mechanism is based on Vernier dual-ring geometry, and a 47 nm tuning range with 52 dB side-mode suppression ratio is observed. These parameters show an increase to 52 nm and 58 dB, respectively, when an additional wavelength filter in the form of a Mach–Zehnder interferometer is added to the cavity. The Lorentzian linewidth of the lasers is measured as low as 5.3 kHz.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.394726

所属栏目:Silicon Photonics

基金项目:Defense Advanced Research Projects Agency10.13039/100000185; Advanced Research Projects Agency–Energy10.13039/100006133;

收稿日期:2020-04-17

录用日期:2020-07-23

网络出版日期:2020-07-24

作者单位    点击查看

Aditya Malik:Department of Electrical & Computer Engineering, University of California, Santa Barbara, California 93106, USA
Joel Guo:Department of Electrical & Computer Engineering, University of California, Santa Barbara, California 93106, USA
Minh A. Tran:Department of Electrical & Computer Engineering, University of California, Santa Barbara, California 93106, USA;Nexus Photonics, Goleta, California 93117, USA
Geza Kurczveil:Hewlett Packard Labs, Palo Alto, California 94304, USA
Di Liang:Hewlett Packard Labs, Palo Alto, California 94304, USA
John E. Bowers:Department of Electrical & Computer Engineering, University of California, Santa Barbara, California 93106, USA

联系人作者:Aditya Malik(amalik@ece.ucsb.edu)

备注:Defense Advanced Research Projects Agency10.13039/100000185; Advanced Research Projects Agency–Energy10.13039/100006133;

【1】R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic and J. E. Bowers. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 13, 17-26(2019).

【2】M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, F. Kish and A. E. Willner. Chapter 4–Foundry capabilities for photonic integrated circuits. Optical Fiber Telecommunications VII. : Academic, 143-193(2020).

【3】D. Bimberg and U. W. Pohl. Quantum dots: promises and accomplishments. Mater. Today. 14, 388-397(2011).

【4】J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers and F. Grillot. 1.3 μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett. 31, 345-348(2019).

【5】S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton and H. Liu. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat. Photonics. 10, 307-311(2016).

【6】A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard and J. E. Bowers. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett. 42, 338-341(2017).

【7】B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling and D. Van Thourhout. Room temperature O-band DFB laser array directly grown on (001) silicon. Nano Lett. 17, 559-564(2017).

【8】J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard and J. E. Bowers. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 55, (2019).

【9】D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard and J. E. Bowers. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photon. 5, 1094-1100(2018).

【10】Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong and K. M. Lau. Bufferless 1.5 μm III–V lasers grown on Si-photonics 220 nm silicon-on-insulator platforms. Optica. 7, 148-153(2020).

【11】J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie and C. Xiang. Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits. Optical Fiber Communication Conference (OFC). : Optical Society of America, (2020).

【12】D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse and C. Roeloffzen. Silicon nitride in silicon photonics. Proc. IEEE. 106, 2209-2231(2018).

【13】Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen and K.-J. Boller. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express. 28, 21713-21728(2020).

【14】C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton and J. E. Bowers. Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica. 7, 20-21(2020).

【15】T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish and J. E. Bowers. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 21, 214-222(2015).

【16】Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu and S. Yu. Monolithic quantum-dot distributed feedback laser array on silicon. Optica. 5, 528-533(2018).

【17】Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard and J. E. Bowers. Tunable quantum dot lasers grown directly on silicon. Optica. 6, 1394-1400(2019).

【18】Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard and J. E. Bowers. Directly modulated single-mode tunable quantum dot lasers at 1.3 μm. Laser Photon. Rev. 14, (2020).

【19】S. Uvin, S. Kumari, A. D. Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. V. Campenhout, G. Morthier, D. V. Thourhout and G. Roelkens. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt. Express. 26, 18302-18309(2018).

【20】G.-L. Su, M. N. Sakib, J. Heck, H. Rong and M. C. Wu. A heterogeneously-integrated III–V/silicon interferometric widely tunable laser. OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED). : Optical Society of America, (2019).

【21】H. Duprez, C. Jany, C. Seassal and B. B. Bakir. Highly tunable heterogeneously integrated III–V on silicon sampled-grating distributed Bragg reflector lasers operating in the O-band. Opt. Express. 24, 20895-20903(2016).

【22】Z. Zhang, D. Jung, J. C. Norman, W. W. Chow and J. E. Bowers. Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications. IEEE J. Sel. Top. Quantum Electron. 25, (2019).

【23】M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton and J. E. Bowers. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron. 26, (2020).

【24】R. Wang, A. Malik, I. ?imonyt?, A. Vizbaras, K. Vizbaras and G. Roelkens. Compact GaSb/silicon-on-insulator 2.0 μm widely tunable external cavity lasers. Opt. Express. 24, 28977-28986(2016).

【25】B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, Z. Huang, A. Beling, J. C. Campbell, D. Liang and R. G. Beausoleil. Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon. Optica. 6, 1277-1281(2019).

【26】M. L. Davenport, M. A. Tran, T. Komljenovic, J. E. Bowers, S. Lourdudoss, R. T. Chen and C. Jagadish. Chapter six–Heterogeneous integration of III–V lasers on Si by bonding. Silicon Photonics. : Elsevier, 99, 139-188(2018).

【27】G. Kurczveil, D. Liang, M. Fiorentino and R. G. Beausoleil. Robust hybrid quantum dot laser for integrated silicon photonics. Opt. Express. 24, 16167-16174(2016).

【28】B. J. Stevens, D. T. D. Childs, H. Shahid and R. A. Hogg. Direct modulation of excited state quantum dot lasers. Appl. Phys. Lett. 95, (2009).

【29】E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett and D. A. Livshits. Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses. Appl. Phys. Lett. 88, (2006).

【30】M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh and E. U. Rafailov. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser. Appl. Phys. Lett. 89, (2006).

【31】M. A. Tran, D. Huang and J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, (2019).

【32】M. Osinski and J. Buus. Linewidth broadening factor in semiconductor lasers-an overview. IEEE J. Quantum Electron. 23, 9-29(1987).

【33】W. W. Chow, Z. Zhang, J. C. Norman, S. Liu and J. E. Bowers. On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0. APL Photon. 5, (2020).

【34】B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil and F. Grillot. Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection. Opt. Lett. 44, 5755-5758(2019).

【35】D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton and J. E. Bowers. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica. 6, 745-752(2019).

【36】M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik and J. Bowers. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics. Appl. Sci. 8, (2018).

引用该论文

Aditya Malik, Joel Guo, Minh A. Tran, Geza Kurczveil, Di Liang, and John E. Bowers, "Widely tunable, heterogeneously integrated quantum-dot O-band lasers on silicon," Photonics Research 8(10), 1551-1557 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

欧洲女人性开放视频