首页 > 论文 > 激光与光电子学进展 > 57卷 > 2期(pp:21014--1)

基于残差通道注意力网络的医学图像超分辨率重建方法

Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

针对医学图像超分辨率重建过程中高频信息缺失导致的模糊问题,提出了一种基于残差通道注意力网络的医学图像超分辨率方法。提出的方法在残差网络的基本单元上去除了批规范化层以稳定训练;去掉缩放层、添加通道注意力块,使神经网络更加关注含有丰富高频信息的通道;使用亚像素卷积层进行上采样操作得到最终输出的高分辨率图像。实验结果表明,提出的方法相比主流的图像超分辨率方法在客观评价指标如峰值信噪比和结构相似性上有显著提升,得到的医学图像纹理细节丰富,视觉体验较好。

Abstract

To resolve the fuzzy problem caused by the lack of high-frequency information in the super-resolution reconstruction of medical images, this study proposes a medical-image super-resolution reconstruction method based on a residual channel attention network. The proposed method removes the batch normalization layer from the basic unit of the residual network (ResNet) to stabilize its training. Furthermore, it removes the scaling layer and adds a channel-attention block that focuses the ResNet on channels with abundant high-frequency details. The feature maps are subsampled using a sub-pixel convolution layer,obtaining the final high-resolution images. Experimental results show that the proposed method significantly improves objective evaluation indexes such as the peak signal-to-noise ratio and structural similarity index compared with mainstream image super-resolution methods. The obtained medical images are sufficiently detailed with high visual quality.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP183

DOI:10.3788/LOP57.021014

所属栏目:图像处理

基金项目:国家重点研发计划;

收稿日期:2019-06-04

修改稿日期:2019-07-11

网络出版日期:2020-01-01

作者单位    点击查看

刘可文:武汉理工大学信息工程学院, 湖北 武汉 430070武汉理工大学宽带无线通信和传感器网络湖北省重点实验室, 湖北 武汉 430070
马圆:武汉理工大学信息工程学院, 湖北 武汉 430070武汉理工大学宽带无线通信和传感器网络湖北省重点实验室, 湖北 武汉 430070
熊红霞:武汉理工大学土木工程与建筑学院, 湖北 武汉 430070
严泽军:宁波市第一医院泌尿外科泌尿系疾病转化医学研究宁波市重点实验室, 浙江 宁波 315010
周志军:湖北省天门市第一人民医院泌尿外科, 湖北 天门 431700
刘朝阳:中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
房攀攀:武汉理工大学信息工程学院, 湖北 武汉 430070武汉理工大学宽带无线通信和传感器网络湖北省重点实验室, 湖北 武汉 430070
李小军:武汉理工大学信息工程学院, 湖北 武汉 430070武汉理工大学宽带无线通信和传感器网络湖北省重点实验室, 湖北 武汉 430070
陈亚雷:武汉理工大学信息工程学院, 湖北 武汉 430070武汉理工大学宽带无线通信和传感器网络湖北省重点实验室, 湖北 武汉 430070

联系人作者:熊红霞(xionghongxia@whut.edu.cn)

备注:国家重点研发计划;

【1】Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview [J]. IEEE Signal Processing Magazine. 2003, 20(3): 21-36.

【2】Bai Y C, Zhang Y Q, Ding M L, et al. SOD-MTGAN: small object detection via multi-task generative adversarial network [M]. ∥Ferrari V, Hebert M, Sminchisescu C, et al. Computer vision-ECCV 2018. Lecture notes in computer science. Cham: Springer. 2018, 11217: 210-226.

【3】Mudunuri S P, Biswas S. Low resolution face recognition across variations in pose and illumination [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016, 38(5): 1034-1040.

【4】Greenspan H. Super-resolution in medical imaging [J]. The Computer Journal. 2008, 52(1): 43-63.

【5】Chen J, Gao H B, Wang W G, et al. Methods and applications of image super-resolution restoration [J]. Laser & Optoelectronics Progress. 2015, 52(2): 020004.
陈健, 高慧斌, 王伟国, 等. 图像超分辨率复原方法及应用 [J]. 激光与光电子学进展. 2015, 52(2): 020004.

【6】Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network [J]. Acta Optica Sinica. 2019, 39(2): 0210003.
席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建 [J]. 光学学报. 2019, 39(2): 0210003.

【7】Song P F, Trzasko J D, Manduca A, et al. Improved super-resolution ultrasound microvessel imaging with spatiotemporal nonlocal means filtering and bipartite graph-based microbubble tracking [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2018, 65(2): 149-167.

【8】Zhang Y Q, Shi F, Cheng J, et al. Longitudinally guided super-resolution of neonatal brain magnetic resonance images [J]. IEEE Transactions on Cybernetics. 2019, 49(2): 662-674.

【9】Oktay O, Ferrante E, Kamnitsas K, et al. Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation [J]. IEEE Transactions on Medical Imaging. 2018, 37(2): 384-395.

【10】Dencks S, Piepenbrock M, Opacic T, et al. Clinical pilot application of super-resolution US imaging in breast cancer [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2019, 66(3): 517-526.

【11】Chu J H, Hu F S, Zhang J Q, et al. An improved single-frame super-resolution algorithm for magnetic resonance image [J]. Laser & Optoelectronics Progress. 2018, 55(5): 051009.
褚晶辉, 胡风硕, 张佳祺, 等. 一种改进的单帧磁共振图像超分辨率算法 [J]. 激光与光电子学进展. 2018, 55(5): 051009.

【12】Dai S Y, Han M, Xu W, et al. SoftCuts: a soft edge smoothness prior for color image super-resolution [J]. IEEE Transactions on Image Processing. 2009, 18(5): 969-981.

【13】Purkait P, Chanda B. Super resolution image reconstruction through Bregman iteration using morphologic regularization [J]. IEEE Transactions on Image Processing. 2012, 21(9): 4029-4039.

【14】Yang J C, Wright J, Huang T S, et al. Image super-resolution via sparse representation [J]. IEEE Transactions on Image Processing. 2010, 19(11): 2861-2873.

【15】Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016, 38(2): 295-307.

【16】Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 1646-1654.

【17】Shi W Z, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 1874-1883.

【18】Dong C, Loy C C, Tang X O. Accelerating the super-resolution convolutional neural network [M]. ∥Leibe B, Matas J, Sebe N, et al. Computer vision-ECCV 2016. Lecture notes in computer science. Cham: Springer. 2016, 9906: 391-407.

【19】He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition . [C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE. 2016, 770-778.

【20】Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 105-114.

【21】Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution . [C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA. New York: IEEE. 2017, 1132-1140.

【22】Hu J, Shen L, Sun G. Squeeze-and-excitation networks . [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 18-22, 2018, Salt Lake City, Utah. New York: IEEE. 2018, 7132-7141.

【23】Clevert D A, Unterthiner T, Hochreiter S. Fast. -02-22)[2019-06-03] . https:∥arxiv. 2016, org/abs/1511: 07289.

【24】Hiai F, Lin M. On an eigenvalue inequality involving the Hadamard product [J]. Linear Algebra and its Applications. 2017, 515: 313-320.

【25】Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks [J]. IEEE Transactions on Computational Imaging. 2017, 3(1): 47-57.

【26】Kingma D P. -01-30)[2019-06-03] . https:∥arxiv. 2017, org/abs/1412: 6980.

【27】Data science bowl 2017[EB/OL]. bowl 2017[EB/OL] [2019-06-03]. https:∥www.kaggle.com/c/data-science-bowl-. 2017.

【28】L Geert, D Oscar, B Jelle, et al. 2019-06-03) . 2017.

【29】Pomi A, Slusallek P. Interactive ray tracing for virtual TV studio applications [J]. JVRB-Journal of Virtual Reality and Broadcasting. 2005, 2(1): 1-10.

引用该论文

Liu Kewen,Ma Yuan,Xiong Hongxia,Yan Zejun,Zhou Zhijun,Liu Chaoyang,Fang Panpan,Li Xiaojun,Chen Yalei. Medical-Image Super-Resolution Reconstruction Method Based on Residual Channel Attention Network[J]. Laser & Optoelectronics Progress, 2020, 57(2): 021014

刘可文,马圆,熊红霞,严泽军,周志军,刘朝阳,房攀攀,李小军,陈亚雷. 基于残差通道注意力网络的医学图像超分辨率重建方法[J]. 激光与光电子学进展, 2020, 57(2): 021014

被引情况

【1】王殿伟,郝元杰,刘颖,谢永军,宋海军. 基于逐级反投影网络的车牌图像超分辨率重建. 激光与光电子学进展, 2020, 57(16): 161002--1

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

欧洲女人性开放视频