首页 > 论文 > Photonics Research > 8卷 > 10期(pp:1558-1565)

Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Interaction of acoustic waves and microbubbles occurs in numerous biomedical applications including ultrasound imaging, drug delivery, lithotripsy treatment, and cell manipulation, wherein the acoustically driven microbubbles routinely act as active microscale oscillators or actuators. In contrast, microbubbles were utilized here as passive receivers to detect broadband ultrasound waves in aqueous environments. The microbubble was photothermally generated on a microstructured optical fiber (MOF) tip, forming a flexible Fabry–Pérot cavity whose gas–water interface was sensitive to ultrasound waves. The MOF severed as both a low-loss waveguide and a compact light condenser, allowing high-efficiency generation and stabilization of ultrasmall microbubbles. Integrated with all-fiber interferometry, a 10 μm diameter microbubble exhibited a low noise-equivalent pressure level of 3.4 mPa/Hz1/2 and a broad bandwidth of 0.8 MHz, capable of detecting weak ultrasounds emitted from red blood cells irradiated by pulsed laser light. With advantages of high sensitivity, compact size, and low cost, the microbubble-based ultrasound sensor has great potential in biomedical imaging and sensing applications.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.394941

所属栏目:Fiber Optics and Optical Communications

基金项目:Guangzhou Science and Technology Plan Project; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program; National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Guangdong Province10.13039/501100003453; Fundamental Research Funds for the Central Universities10.13039/501100012226; Province High-Level Talents Introduction Plan;

收稿日期:2020-04-16

录用日期:2020-07-26

网络出版日期:2020-07-27

作者单位    点击查看

Jun Ma:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
Yang He:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
Xue Bai:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
Li-Peng Sun:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
Kai Chen:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
Kyunghwan Oh:Photonic Device Physics Laboratory, Department of Physics, Yonsei University, Seoul 033722, South Korea
Bai-Ou Guan:Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China

联系人作者:Bai-Ou Guan(tguanbo@jnu.edu.cn)

备注:Guangzhou Science and Technology Plan Project; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program; National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Guangdong Province10.13039/501100003453; Fundamental Research Funds for the Central Universities10.13039/501100012226; Province High-Level Talents Introduction Plan;

【1】T. G. LeightonT. G. Leighton. The Acoustic Bubble. : Academic, (1994).

【2】C. E. BrennenC. E. Brennen. Cavitation and Bubble Dynamics. : Cambridge University, (2013).

【3】S. Sirsi and M. Borden. Microbubble compositions, properties and biomedical applications. Bubble Sci. Eng. Technol. 1, 3-17(2009).

【4】E. P. Stride and C. C. Coussios. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc. Inst. Mech. Eng. H. 224, 171-191(2010).

【5】C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture and M. Tanter. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 527, 499-502(2015).

【6】R. Lachaine, C. Boutopoulos, P. Y. Lajoie, E. Boulais and M. Meunier. Rational design of plasmonic nanoparticles for enhanced cavitation and cell perforation. Nano Lett. 16, 3187-3194(2016).

【7】F. Xie, J. Lof, C. Everbach, A. He, R. M. Bennett, T. Matsunaga, J. Johanning and T. R. Porter. Treatment of acute intravascular thrombi with diagnostic ultrasound and intravenous microbubbles. JACC Cardiovasc. Imaging. 2, 511-518(2009).

【8】J. J. Choi, M. Pernot, S. A. Small and E. E. Konofagou. Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound Med. Biol. 33, 95-104(2007).

【9】L. Lin, X. Peng, Z. Mao, W. Li, M. N. Yogeesh, B. B. Rajeeva, E. P. Perillo, A. K. Dunn, D. Akinwande and Y. Zheng. Bubble-pen lithography. Nano Lett. 16, 701-708(2016).

【10】A. Hashmi, G. Yu, M. Reilly-Collette, G. Heiman and J. Xu. Oscillating bubbles: a versatile tool for lab on a chip applications. Lab Chip. 12, 4216-4227(2012).

【11】Y. Xie, C. Zhao, Y. Zhao, S. Li, J. Rufo, S. Yang, F. Guo and T. J. Huang. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles. Lab Chip. 13, 1772-1779(2013).

【12】Y. Xie, N. Nama, P. Li, Z. Mao, P. H. Huang, C. Zhao, F. Costanzo and T. J. Huang. Probing cell deformability via acoustically actuated bubbles. Small. 12, 902-910(2015).

【13】M. Martins, V. Correia, J. M. Cabral, S. Lanceros-Mendez and J. G. Rocha. Optimization of piezoelectric ultrasound emitter transducers for underwater communications. Sens. Actuators A. 184, 141-148(2012).

【14】B. W. Drinkwater and P. D. Wilcox. Ultrasonic arrays for non-destructive evaluation: a review. NDT & E Int. 39, 525-541(2006).

【15】G. Wissmeyer, M. A. Pleitez, A. Rosenthal and V. Ntziachristos. Looking at sound: optoacoustics with all-optical ultrasound detection. Light Sci. Appl. 7, (2018).

【16】P. S. Epstein and M. S. Plesset. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505-1509(1950).

【17】S. Ljunggren and J. C. Eriksson. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloid. Surf. A. 129–130, 151-155(1997).

【18】L. Lin, E. H. Hill, X. Peng and Y. Zheng. Optothermal manipulations of colloidal particles and living cells. Acc. Chem. Res. 51, 1465-1474(2018).

【19】K. Kumagai, S. Hasegawa and Y. Hayasaki. Volumetric bubble display. Optica. 4, 298-302(2017).

【20】N.-G. Kim and K.-W. Lee. Analysis of the linear decrease in the reflectivity measured for bubbles growing on a substrate in a liquid for dissolved-gas sensor applications. Sens. Actuators B. 284, 1-6(2019).

【21】C. Zhao, Y. Liu, Y. Zhao, N. Fang and T. J. Huang. A reconfigurable plasmofluidic lens. Nat. Commun. 4, (2013).

【22】F. Gan, Y. Wang, C. Sun, G. Zhang, H. Li, J. Chen and Q. Gong. Widely tuning surface plasmon polaritons with laser-induced bubbles. Adv. Opt. Mater. 5, (2017).

【23】H. Xu, G. Wang, J. Ma, L. Jin, K. Oh and B.-O. Guan. Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements. Opt. Express. 26, 11976-11983(2018).

【24】C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho and X. Shi. Suspended core photonic microcells for sensing and device applications. Opt. Lett. 38, 1881-1883(2013).

【25】R. S. Taylor and C. Hnatovsky. Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe. J. Appl. Phys. 95, 8444-8449(2004).

【26】M. E. Zaytsev, Y. Wang, Y. Zhang, G. Lajoinie, X. Zhang, A. Prosperetti, H. J. W. Zandvliet and D. Lohse. Gas-vapor interplay in plasmonic bubble shrinkage. J. Phys. Chem. C. 124, 5861-5869(2020).

【27】Y. Wang, M. E. Zaytsev, L. T. Hai, J. C. T. Eijkel, H. J. W. Zandvliet, X. Zhang and D. Lohse. Vapor and gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano. 11, 2045-2051(2017).

【28】D. Lohse and X. Zhang. Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87, 981-1035(2015).

【29】G. Baffou, J. Polleux, H. Rigneault and S. Monneret. Super-heating and micro-bubble generation around plasmonic nanoparticles under CW illumination. J. Phys. Chem. C. 118, 4890-4898(2014).

【30】S. Duhr and D. Braun. Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA. 103, 19678-19682(2006).

【31】J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang and S. Fan. Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photon. Technol. Lett. 25, 932-935(2013).

【32】W. L. Emkey and C. A. Jack. Analysis and evaluation of graded-index fiber lenses. J. Lightwave Technol. 5, 1156-1164(1987).

【33】D. MarcuseD. Marcuse. Loss analysis of single-mode fiber splices. Bell Syst. Tech. J. 56, 703-718(1977).

【34】L. Xiao, T. A. Birks and W. H. Loh. Hydrophobic photonic crystal fibers. Opt. Lett. 36, 4662-4664(2011).

【35】D. J. LoveD. J. Love. Spot size, adiabaticity and diffraction in tapered fibres. Electron. Lett. 23, 993-994(1987).

【36】T. G. Tiecke, K. P. Nayak, J. D. Thompson, T. Peyronel, N. P. de Leon, V. Vuleti? and M. D. Lukin. Efficient fiber-optical interface for nanophotonic devices. Optica. 2, 70-75(2015).

【37】J. Liu, L. Yuan, J. Lei, W. Zhu, B. Cheng, Q. Zhang, Y. Song, C. Chen and H. Xiao. Micro-cantilever-based fiber optic hydrophone fabricated by a femtosecond laser. Opt. Lett. 42, 2459-2462(2017).

【38】J. D. N. CheekeJ. D. N. Cheeke. Fundamentals and Applications of Ultrasonic Waves. : CRC Press, (2016).

【39】G. Ku, X. Wang, G. Stoica and L. V. Wang. Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol. 49, 1329-1338(2004).

【40】T. J. Allen, O. Ogunlade, E. Zhang and P. C. Beard. Large area laser scanning optical resolution photoacoustic microscopy using a fibre optic sensor. Biomed. Opt. Express. 9, 650-660(2018).

【41】Y. Zhou, S. V. Tripathi, I. Rosman, J. Ma, P. Hai, G. P. Linette, M. L. Council, R. C. Fields, L. V. Wang and L. A. Cornelius. Noninvasive determination of melanoma depth using a handheld photoacoustic probe. J. Invest. Dermatol. 137, 1370-1372(2017).

【42】R. A. Kruger, C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio and D. Steed. Dedicated 3D photoacoustic breast imaging. Med. Phys. 40, (2013).

【43】R. S. Taylor and C. Hnatovsky. Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe. Opt. Express. 12, 916-928(2004).

【44】M. Xu and L. V. Wang. Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E. 71, (2005).

【45】C. Cai, X. Wang, K. Si, J. Qian, J. Luo and C. Ma. Feature coupling photoacoustic computed tomography for joint reconstruction of initial pressure and sound speed in vivo. Biomed. Opt. Express. 10, 3447-3462(2019).

【46】J. Aguirre, M. Schwarz, N. Garzorz, M. Omar, A. Buehler, K. Eyerich and V. Ntziachristos. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat. Biomed. Eng. 1, (2017).

【47】M. Xu and L. V. Wang. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E. 67, (2003).

【48】W. Xia, D. Piras, J. C. G. Van Hespen, S. Van Veldhoven, C. Prins, T. G. Van Leeuwen, W. Steenbergen and S. Manohar. An optimized ultrasound detector for photoacoustic breast tomography. Med. Phys. 40, (2013).

【49】S. Manohar and M. Dantuma. Current and future trends in photoacoustic breast imaging. Photoacoustics. 16, (2019).

【50】J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester, S. Noimark, O. Ogunlade, I. P. Parkin, I. Papakonstantinou, A. E. Desjardins, E. Z. Zhang and P. C. Beard. Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nat. Photonics. 11, 714-719(2017).

【51】K. Namura, K. Nakajima and M. Suzuki. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble. Sci. Rep. 7, (2017).

引用该论文

Jun Ma, Yang He, Xue Bai, Li-Peng Sun, Kai Chen, Kyunghwan Oh, and Bai-Ou Guan, "Flexible microbubble-based Fabry–Pérot cavity for sensitive ultrasound detection and wide-view photoacoustic imaging," Photonics Research 8(10), 1558-1565 (2020)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

欧洲女人性开放视频