首页 > 论文 > 光学学报 > 40卷 > 16期(pp:1611001--1)

基于显著性剖面的高光谱图像分类算法

Hyperspectral Image Classification Algorithm Based on Saliency Profile

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

图像中的目标通常具有复杂的形状和尺寸,现有方法难以充分挖掘地物的显著性空间信息。基于此,提出一种基于显著性测度的形态学显著性剖面。首先,根据图像区域内部灰度和轮廓信息计算显著性测度,用于描述目标在场景中的重要程度,然后提取具有显著性测度局部极大值的重要区域,并通过多层级特征描述其空间信息。形态学显著性剖面的构造首先利用基于显著性测度的属性滤波滤除图像的冗余细节,并保留图像的显著结构;再根据图像中显著的组织结构生成层次化的空间特征。实验采用了两组高光谱数据集进行验证,实验结果表明所提算法的分类效果优于其他形态学特征提取算法。

Abstract

Generally, the objects in an image have complex shapes and sizes. Therefore, it is difficult for the existing morphological features to completely describe the significant spatial information of the image. Hence, a morphological saliency profile is developed in this study based on the saliency measure. The grayscale and contour information of a particular area can be used to estimate the value of the saliency measure. This measure is used to describe the importance of a target in a scene. Thus, the important area of an image can be extracted based on the local maximum value of the saliency measure, and its spatial information can be obtained based on the multi-level features. When extracting the morphological saliency profile, attribute filtering based on the saliency measure is performed to eliminate redundant image details and retain the saliency profile of the image. Subsequently, the hierarchical spatial features are generated according to the saliency of the organization structure in the image. Two hyperspectral datasets are used in this experiment for verification. The experimental results demonstrate that the classification performance of the proposed algorithm is superior to those of the existing morphological feature extraction algorithms.

广告组1 - 空间光调制器+DMD
补充资料

中图分类号:TP753, 文献标志码 A, doi: 10.3788/AOS202040.1611001

DOI:10.3788/AOS202040.1611001

所属栏目:成像系统

基金项目:国家重点研发计划;

收稿日期:2020-04-03

修改稿日期:2020-05-06

网络出版日期:2020-08-01

作者单位    点击查看

胡轩:武汉大学测绘遥感信息工程国家重点实验室, 湖北 武汉 430079
卢其楷:武汉大学电子信息学院, 湖北 武汉 430079

联系人作者:卢其楷

备注:国家重点研发计划;

【1】Yu C Y, Zhao M, Song M P, et al. Hyperspectral image classification method based on targets constraint and spectral-spatial iteration [J]. Acta Optica Sinica. 2018, 38(6): 0628003.
于纯妍, 赵猛, 宋梅萍, 等. 基于目标约束与谱空迭代的高光谱图像分类方法 [J]. 光学学报. 2018, 38(6): 0628003.

【2】Zhao C H, You W, Qi B, et al. Real-time anomaly detection algorithm for hyperspectral remote sensing by using recursive polynomial kernel function [J]. Acta Optica Sinica. 2016, 36(2): 0228002.
赵春晖, 尤伟, 齐滨, 等. 采用多项式递归核的高光谱遥感异常实时检测算法 [J]. 光学学报. 2016, 36(2): 0228002.

【3】Haboudane D, Miller J R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture [J]. Remote Sensing of Environment. 2004, 90(3): 337-352.

【4】Jiang X Q, Ye Q, Lin Y, et al. Inverting study on soil water content based on harmonic analysis and hyperspectral remote sensing [J]. Acta Optica Sinica. 2017, 37(10): 1028001.
姜雪芹, 叶勤, 林怡, 等. 基于谐波分析和高光谱遥感的土壤含水量反演研究 [J]. 光学学报. 2017, 37(10): 1028001.

【5】Liu T Z, Gu Y F, Chanussot J, et al. Multimor phological superpixel model for hyperspectral image classification [J]. IEEE Transactions on Geoscience and Remote Sensing. 2017, 55(12): 6950-6963.

【6】Ghamisi P, Dalla Mura M, Benediktsson J A. A survey on spectral-spatial classification techniques based on attribute profiles [J]. IEEE Transactions on Geoscience and Remote Sensing. 2015, 53(5): 2335-2353.

【7】Ma L, Li M C, Ma X X, et al. A review of supervised object-based land-cover image classification [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2017, 130: 277-293.

【8】Pesaresi M, Benediktsson J A. A new approach for the morphological segmentation of high-resolution satellite imagery [J]. IEEE Transactions on Geoscience and Remote Sensing. 2001, 39(2): 309-320.

【9】Palmason J A, Benediktsson J A, Sveinsson J R, et al. Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis . [C]∥Proceedings of 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005, July 29-29, 2005, Seoul, Korea. New York: IEEE. 2005, 8884363.

【10】Dalla Mura M, Villa A, Benediktsson J A, et al. Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis [J]. IEEE Geoscience and Remote Sensing Letters. 2011, 8(3): 542-546.

【11】Ghamisi P, Souza R, Benediktsson J A, et al. Extinction profiles for the classification of remote sensing data [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(10): 5631-5645.

【12】Salembier P. Wilkinson M H F. Connected operators: a review of region-based morphological image processing techniques [J]. IEEE Signal Processing Magazine. 2009, 26(6): 136-157.

【13】Demir B, Bruzzone L. Histogram-based attribute profiles for classification of very high resolution remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing. 2016, 54(4): 2096-2107.

【14】Xu Y C, Géraud T, Najman L. Salient level lines selection using the Mumford-Shah functional . [C]∥2013 IEEE International Conference on Image Processing, September 15-18, 2013, Melbourne, VIC, Australia. New York: IEEE. 2013, 1227-1231.

【15】Dalla Mura M, Benediktsson J A, Bruzzone L. Self-dual attribute profiles for the analysis of remote sensing images [M]. ∥Soille P, Pesaresi M, Ouzounis G K. Mathematical morphology and its applications to image and signal processing. Lecture notes in computer science. Heidelberg: Springer. 2011, 6671: 320-330.

【16】Mountrakis G, Im J, Ogole C. Support vector machines in remote sensing: a review [J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2011, 66(3): 247-259.

【17】Benediktsson J A, Palmason J A, Sveinsson J R. Classification of hyperspectral data from urban areas based on extended morphological profiles [J]. IEEE Transactions on Geoscience and Remote Sensing. 2005, 43(3): 480-491.

【18】Marpu P R, Pedergnana M, Mura M D, et al. Classification of hyperspectral data using extended attribute profiles based on supervised and unsupervised feature extraction techniques [J]. International Journal of Image and Data Fusion. 2012, 3(3): 269-298.

【19】Ghamisi P, Souza R, Benediktsson J A, et al. Hyperspectral data classification using extended extinction profiles [J]. IEEE Geoscience and Remote Sensing Letters. 2016, 13(11): 1641-1645.

【20】Fang L Y, Li S T, Duan W H, et al. Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels [J]. IEEE Transactions on Geoscience and Remote Sensing. 2015, 53(12): 6663-6674.

引用该论文

Hu Xuan,Lu Qikai. Hyperspectral Image Classification Algorithm Based on Saliency Profile[J]. Acta Optica Sinica, 2020, 40(16): 1611001

胡轩,卢其楷. 基于显著性剖面的高光谱图像分类算法[J]. 光学学报, 2020, 40(16): 1611001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF

欧洲女人性开放视频